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TECHNICAL PUBLICATION

BASELINE COMPuTATIONAL FLuID DYNAMICS METHODOLOgY FOR  
LONgITuDINAL-MODE LIQuID-PROPELLANT ROCKET COMBuSTION INSTABILITY

1.  INTRODuCTION

L�qu�d-propellant rocket combust�on �nstab�l�ty research has been pursued w�th vary�ng degrees of 
emphas�s for more than 50 yr. These efforts have led to the successful development of many rel�able 
eng�nes, wh�ch have been ma�nly the result of much tr�al and error development test�ng based on a great 
deal of �ntu�t�on and exper�ence, and eng�ne des�gn rema�ns today as much eng�neer�ng art as sc�ence. A 
deta�led understand�ng of the mechan�sm by wh�ch combust�on �nstab�l�ty occurs �n these dev�ces s�mply 
does not ex�st, and the occurrence of resonant combust�on �nstab�l�t�es cont�nues to be a major r�sk �n the 
development of any new l�qu�d-propellant rocket eng�ne.

Prev�ous pred�ct�ve methods have been based pr�mar�ly on approx�mate analyt�cal models, but 
computat�onal flu�d dynam�cs (CFD) capab�l�ty has advanced to the stage where �t can now be effect�vely 
used as a research and development tool.1 Clearly, CFD methods have the potent�al to resolve the funda-
mental chamber processes �n great phys�cal deta�l, yet these results are h�ghly dependent on the val�d�ty 
and f�del�ty of the var�ous phys�cal submodels. For th�s reason, CFD, at th�s stage, �s more valuable as a 
computat�onal test-bed than as a pract�cal des�gn tool.

Ut�l�zat�on of CFD methods for the combust�on �nstab�l�ty problem also requ�res careful cons�der-
at�on of numer�cal accuracy. For example, both the d�ss�pat�ve and d�spers�ve character�st�cs of a part�cular 
scheme can have an �mportant �nfluence on numer�cal accuracy �n unsteady flow problems, as demon-
strated by Hs�eh.2 Furthermore, stab�l�ty l�m�ts can be greatly affected by the transm�ss�on and reflect�on 
of flow d�sturbance �nc�dent on the boundar�es, and �mplementat�on of appropr�ate boundary cond�t�ons �s 
not tr�v�al.

Th�s Techn�cal Publ�cat�on develops and evaluates a computat�onal method for the analys�s  
of long�tud�nal-mode l�qu�d-propellant rocket combust�on �nstab�l�ty based on the unsteady, quas�- 
one-d�mens�onal Euler equat�ons. The unsteady Euler equat�ons �n �nhomogeneous form reta�n full  
hyperbol�c�ty and are �ntegrated �mpl�c�tly �n t�me us�ng a second-order, h�gh-resolut�on, character�st�c-
based, flux-d�fferenc�ng spat�al d�scret�zat�on w�th Roe averag�ng of the Jacob�an matr�x. Combust�on 
process source terms were �ntroduced through the �ncorporat�on of a two-zone, l�near�zed representat�on: 
(1) A two-parameter collapsed combust�on zone at the �njector face, or (2) a two-parameter d�str�buted 
combust�on zone �n wh�ch �nterphase transport �s der�ved from a Lagrang�an treatment of the propellant 
spray. The method �s evaluated aga�nst a s�mpl�f�ed analyt�cal solut�on based on l�near�zed small d�stur-
bance theory, and the numer�cal methodology �s then exerc�sed on a gener�c combustor conf�gurat�on 



2

us�ng both collapsed and d�str�buted combust�on zone models w�th a short-nozzle adm�ttance approx�ma-
t�on for the outflow boundary.

The result�ng basel�ne open-source CFD code �s able to serve educat�onal/pedagog�cal needs �n �ts 
current form and could eventually be developed �nto a pract�cal research and development tool by extend-
�ng the methodology to mult�ple d�mens�ons, �ncorporat�ng real�st�c phys�cal submodels, and engag�ng �n 
a pa�nstak�ng val�dat�on effort. Ult�mately, CFD methods may be of most pract�cal ut�l�ty as computat�onal 
test-beds for �nvest�gat�ng and study�ng the underly�ng phys�co-chem�cal mechan�sms assoc�ated w�th 
l�qu�d-propellant rocket combust�on �nstab�l�ty.
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2.  THEORETICAL AND MATHEMATICAL FORMuLATION

2.1  Governing Equations

The gas phase �s treated us�ng an Euler�an descr�pt�on w�th appropr�ate source terms for �nterphase 
transport coupl�ng w�th the spray. Thus, the problem reduces to solv�ng the unsteady, quas�-one- 
d�mens�onal Euler equat�ons, wh�ch may be wr�tten �n conservat�ve form us�ng matr�x notat�on as

 
∂
∂

+
∂
∂

=
Q
t

E
x

H ,  (1)

where the conserved var�able vector, Q, and the convect�ve flux vector, E, are def�ned by

 Q
S

uS
eS

=
















ρ
ρ
ρ

 (2)

and

 E

uS

u p S

ue up S

= +( )
+( )



















ρ

ρ

ρ

2 .  (3)

The source vector, H, conta�ns contr�but�ons due to the var�able cross-sect�on area and �nterphase 
transport source terms. Th�s vector �s denoted as the sum of two components:

 H H H= +1 2 .  (4)

For s�ngle-phase flow, only H1 need be cons�dered to account for the var�able area effect on the momen-
tum equat�on. It cons�sts of a s�ngle component:

 H p
S
x1

0

0

=
∂
∂



















.  (5)

For two-phase flow, the source vector H2 must be �ncluded to account for �nterphase transport effects on 
the gas-phase conservat�on equat�on. It has the form
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.  (6)

Here, w  represents the propellant vapor�zat�on/combust�on rate per un�t volume. The perfect gas equat�on 
of state p RT e u= = −( ) −



ρ γ ρ1 22  completes the govern�ng system, where e C T uv= + 2 2  repre-

sents the total �nternal energy.

Th�s �nhomogeneous form of the Euler equat�ons reta�ns full hyperbol�c�ty. Thus, the Jacob�an 
coeff�c�ent matr�x, A E Q= ∂ ∂ , has real e�genvalues (u, u c+ , and u c−  w�th the speed of sound def�ned 
by c p= )γ ρ . Follow�ng convent�onal pract�ce, A may be d�agonal�zed such that

 T M AMT− − =1 1 Λ ,  (7)

where M Q V= ∂ ∂  �s a transformat�on matr�x from the conservat�on var�ables Q to the pr�m�t�ve var�ables 
V, T �s a s�m�lar�ty transformat�on matr�x formed from the e�genvectors of the pr�m�t�ve var�able Jacob�an 
coeff�c�ent matr�x M AM−1 , and Λ = + −{ } diag , , u u c u c  �s the d�agonal e�genvalue matr�x.

For conven�ence, pos�t�ve and negat�ve e�genvalue matr�ces may be def�ned as Λ±, where Λ+ con-
ta�ns only pos�t�ve e�genvalues and Λ− conta�ns only negat�ve e�genvalues. It therefore follows that 
A MT T M A A= +( ) = ++ − − − + −Λ Λ 1 1  and A MT T M A A= −( ) = −+ − − − + −Λ Λ 1 1 .

2.2  Numerical Scheme

Integrat�on of the Euler equat�ons �s accompl�shed through temporal and spat�al f�n�te- 
d�fference d�scret�zat�on w�th appropr�ate l�near�zat�on. For spat�al d�scret�zat�on, a conservat�ve formula-
t�on was des�red that could y�eld good spat�al resolut�on wh�le avo�d�ng spur�ous numer�cal osc�llat�ons. 
In select�ng a t�me-�ntegrat�on method, the central concerns were obta�n�ng adequate t�me-accuracy and 
good numer�cal stab�l�ty. These attr�butes are central to the descr�pt�on of unsteady flows typ�cally encoun-
tered �n a combust�on stab�l�ty analys�s. Therefore, both the d�ss�pat�ve and d�spers�ve character�st�cs of a 
numer�cal scheme are �mportant po�nts of cons�derat�on.

An assessment of numer�cal techn�ques for unsteady flow calculat�ons has been carr�ed out by 
Hs�eh.2 Based on h�s survey of var�ous spat�al d�scret�zat�on schemes, s�xth-order central d�fferenc�ng of 
the convect�ve fluxes and fourth-order art�f�c�al d�ss�pat�on y�elded very good all around performance. He 
also explored character�st�c-based schemes and found that second-order upw�nd scheme (2UP) flux d�f-
ferenc�ng us�ng Roe-averaged Jacob�an coeff�c�ent matr�ces and nonl�near flux l�m�ters to ach�eve total-
var�at�on-d�m�n�sh�ng (TVD) cond�t�ons performed very well w�th regard to shock captur�ng but enta�led 
h�gher d�ss�pat�ve errors �n mult�d�mens�onal problems. Th�s character�st�c based spat�al d�scret�zat�on 
scheme was adopted, along w�th a general�zed �mpl�c�t t�me �ntegrat�on method, for the present develop-
ment. Although not qu�te as effect�ve as an expl�c�t Runge-Kutta mult�stage approach, �mpl�c�t t�me �nte-
grat�on prov�des adequate resolut�on and stab�l�ty and �s very robust.
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2.2.1  Discretization

Development of the numer�cal scheme beg�ns w�th a general�zed �mpl�c�t formulat�on for the Euler 
equat�ons �n the form

 ∆ ∆
∆

∆Q
t
x

E E tHj
n

j j j

n
+ −( ) −





++ −

+
θ  1 2 1 2

1
1/ / −−( ) −( ) −





=+ −θ ∆
∆

∆t
x

E E tHj j j

n
 1 2 1 2 0/ / ,  (8)

where θ = 1  y�elds the Euler �mpl�c�t (EI) scheme and θ = 1 2/  y�elds the Crank-N�cholson (CN) (trape-
zo�dal) scheme. The f�rst term �s def�ned by ∆Q Q Qj

n
j
n

j
n= −+1 , and the numer�cal flux, E, �s deta�led to 

f�rst-order accuracy by

  E E E A Q Qj j j j j j+ + + += + − −( )



1 2

1
1 1 2 1

1
2/

( )
/

..  (9)

where A  �s the Jacob�an coeff�c�ent matr�x evaluated us�ng the Roe-averaged quant�t�es3,4

 ρ ρ ρj j j+ +=1 2 1/ ,  (10)

 u
u u

j
j j j j

j j
+

+ +

+
=

+

+1 2
1 1

1
/ ,

ρ ρ

ρ ρ
 (11)

 h
h h

j
j j j j

j j
+

+ +

+
=

+

+1 2
1 1

1
/ ,

ρ ρ

ρ ρ
 (12)

and

 c h
u

j j
j

+ +
+= −( ) −











1 2 1 2

1 2
2

1
2/ /

/ .γ  (13)

The delta form of the general�zed �mpl�c�t scheme �s obta�ned by �ntroduc�ng ∆   E E En n n= −+1  
and ∆ ∆H H H H Q Qn n n n= − = ∂ ∂+1 :

 ∆ ∆
∆

∆ ∆ ∆ ∆Q
t
x

E E t
H
Q

Qj
n

j
n

j
n

j
j
n+ −( ) −

∂
∂+ −θ  1 2 1 2/ /













= − ( )R Qj
n ,  (14)

where
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 ∆ ∆ ∆ ∆ ∆ E E E A Q Qj
n

j j j j j+ + + += + − −( )
1 2 1 1 2 1

1
2/ /



n

 (15)

and R Qj
n( )  �s a res�dual expl�c�t operator def�ned by

 R Q
t
x

E E tHj
n

j
n

j
n

j
n( ) = −( ) −+ −

∆
∆

∆ 1 2 1 2/ / .  (16)

The var�able cross-sect�onal area effect �s �ncluded �n the source vector Jacob�an, but all �nterphase 
transport appears �n the res�dual expl�c�t operator. To arr�ve at the f�nal form used for computat�on, subst�-
tute ∆ ∆E A Qj j j=  and collect l�ke terms to y�eld

 

− +( )







+ −
∂

− − −θ

θ

∆
∆

∆

∆

t
x

A A Q

I t
H

j
n

j
n

j
n

2 1 1 2 1
/

∂∂
+ +( )











+ −Q

t
x

A A Q
j

j
n

j
n

j
nθ ∆

∆
∆

2 1 2 1 2
 

/ / 

+ +( )





+ + +θ ∆

∆
∆t

x
A A Qj

n
j
n

j
n

2 1 1 2 1
/

.  (17)

Th�s f�rst-order accurate scheme exh�b�ts robust nonosc�llatory behav�or, but spat�al resolut�on �s 
poor. D�rect subst�tut�on of second-order d�fference formulas does not �mprove matters e�ther because th�s 
leads to the generat�on of spur�ous osc�llat�ons. To c�rcumvent th�s d�ff�culty, Harten has �ntroduced the 
TVD property and der�ved suff�c�ent cond�t�ons for construct�ng schemes that sat�sfy th�s property.5 Such 
construct�ons have been carr�ed out for both expl�c�t and �mpl�c�t t�me �ntegrat�on schemes.6,7 The mecha-
n�sms currently �n use for TVD cond�t�ons are based on some k�nd of grad�ent l�m�t�ng procedure. We 
adapt the procedure based on a nonl�near flux l�m�ter. The second-order convect�ve flux vector �s obta�ned 
by add�ng correct�ve terms to the f�rst-order flux vector. A general�zed form wh�ch may be spec�al�zed for 
second-order central d�fference (2CD), 2UP, or th�rd-order b�ased upw�nd scheme (3UP) �s g�ven by2

  E E E Ej j j j+ + −
+

+= +
−

−1 2
2

1 2
1

1 2 3
1

4/
( )

/
( )

/ /ˆ ˆκ ∆ ∆ 22 1 2 1 2
1

4
−

+
+

+
−



 +

+
−





κ ∆ ∆ˆ ˆ ,/ /E Ej j  (18)

where

 ∆ ∆ˆ ˆ ,/ / /E MTj j j+
−

+ +
−= ( )1 2 1 2 1 2σ  (19)

 ∆ ∆ˆ ˆ ,/ / /E MTj j j+
+

+ +
+= ( )1 2 1 2 1 2σ  (20)

 ∆ ∆ ∆ˆ minmod , ,/ / /σ σ β σj j j+
−

+
−

−
−= 



1 2 1 2 1 2  (21)
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 ∆ ∆ ∆ˆ minmod , ,/ / /σ σ β σj j j+
+

+
+

−
+= 



1 2 1 2 3 2  (22)

 ∆ Λ Λσ j j j j jT M Q Q+
−

+
− −

+ += −( ) ( ) −( )1 2 1 2
1 1

1 2 1
1
2/ / /

,,  (23)

 ∆ Λ Λσ j j j j jT M Q Q+
+

+
− −

+ += +( ) ( ) −( )1 2 1 2
1 1

1 2 1
1
2/ / /

,,  (24)

and the m�nmod operator �s def�ned by

 minmod , sgn max ,min , sgn .x y x x y x[ ] = ( ) ( ){ } 0  (25)

The values of κ correspond�ng to the alternat�ve spat�al d�scret�zat�on schemes are κ = 1 for 2CD, 
κ = −1  for 2UP, and κ = 1 3  for 3UP.

The constant, β, �s a compress�on parameter that �s restr�cted to the range 1 3 1≤ ≤ −( ) −( )β κ κ  w�th 
β = 6  when κ = 1. To ma�nta�n an eff�c�ent algor�thm, some t�me accuracy �s sacr�f�ced by �nclud�ng the 
second-order numer�cal flux �n the res�dual expl�c�t operator only. In th�s way, the tr�d�agonal block struc-
ture of the f�rst-order flux �s ma�nta�ned; thereby, avo�d�ng a pentad�agonal block system.

2.2.2  Boundary Conditions

Boundary cond�t�ons for the computat�onal analys�s are �mplemented accord�ng to the propagat�on 
of �nformat�on along the flow character�st�cs. On a locally one-d�mens�onal bas�s, for �nstance, each 
e�genvalue may be assoc�ated w�th a part�cular character�st�c. If the e�genvalue �s pos�t�ve, the correspond-
�ng character�st�c �s r�ght runn�ng. Conversely, �f the e�genvalue �s negat�ve, the character�st�c �s left run-
n�ng. When a character�st�c runs out of the computat�onal doma�n, the boundary cond�t�on depends on the 
�nternal flow f�eld, and a numer�cal boundary cond�t�on must be formulated that depends on the computed 
solut�on. The number of unknown flow parameters m�nus the number of numer�cal boundary cond�t�ons 
g�ves the number of phys�cal boundary cond�t�ons that must be �mposed. The numer�cal and phys�cal 
boundary cond�t�ons must be compat�ble w�th the system of equat�ons for the character�st�c var�ables.

The numer�cal boundary cond�t�ons are formulated for an �mpl�c�t scheme from the character�st�c 
form of the equat�ons w�th a select�on matr�x for choos�ng the outgo�ng character�st�cs. Also, one-s�ded 
d�fferences are used to couple a boundary node to the �nter�or. The result�ng forms are as follows:

Inflow boundary j =( )1 :

 L T M Q
t

x
E t

H
Q

Qj
n

j
n

j
j

− −
+( ) + −

∂
∂




1 1

1 22
∆ ∆

∆
∆ ∆ ∆θ  /







= − ( ) ( )− −L T M R Qj
n1 1 .  (26)

Outflow boundary j J=( ) :
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 L T M Q
t

x
E t

H
Q

Qj
n

j
n

j
j

− −
−( ) + −

∂
∂




1 1

1 22
∆ ∆

∆
∆ ∆ ∆θ  /







= − ( ) ( )− −L T M R Qj
n1 1 .  (27)

Here, T–1M–1 �s �ntroduced to obta�n the character�st�c var�ables and L �s the character�st�c select�on matr�x. 
For example, to choose the left-runn�ng character�st�c only for subson�c �nflow, L , ,= { }diag 0 0 1 . In the 
case of superson�c outflow, there are three outrunn�ng character�st�cs such that L = { }diag 1 1 1, , . If the 
outflow boundary �s subson�c, on the other hand, there are only two r�ght-runn�ng character�st�cs, and 
L = { }diag 1 1 0, , . By us�ng one-s�ded d�fferences, each numer�cal boundary relat�on has a two-node sup-
port �nvolv�ng a boundary node and an adjacent �nter�or node.

The �mposed phys�cal boundary cond�t�ons are �mposed by lett�ng B*  represent the spec�f�ed 
boundary flow parameter. Then, Newton �terat�on �mpl�es B B B Q Qn n n+ = + ∂ ∂1 ∆ , and by enforc�ng 
B Bn+ →1 * , we obta�n the constra�n�ng relat�onsh�p

 ∂
∂

= −
B
Q

Q B B
j

j
n n∆ * .  (28)

Both the l�near�zed numer�cal and phys�cal boundary relat�ons are solved w�th the system of l�near alge-
bra�c equat�ons for the �nter�or nodes.

2.3  Combustion Model

A general�zed schemat�c of a convent�onal l�qu�d propellant rocket eng�ne �s shown �n f�gure 1. 
Propellant combust�on �n the rocket chamber �s modeled as a two-zone process cons�st�ng of a collapsed 
combust�on zone at the �njector face boundary and a d�str�buted combust�on zone extend�ng from the 
�njector face to the po�nt where propellant react�on �s completed. Thus, the �nflow boundary for the com-
putat�on �s a transp�r�ng react�ve surface �n wh�ch a small fract�on of the propellant enters as a hot subson�c 
gaseous flow wh�le the bulk of the propellant enters �n the form of an unreacted l�qu�d spray. Thus, the 
subson�c �nflow boundary has only one outrunn�ng character�st�c, and two phys�cal boundary cond�t�ons 
must be spec�f�ed.

The propellant combust�on rate can be sens�t�ve to pressure and veloc�ty fluctuat�ons, wh�ch per-
m�ts the development of a feedback loop for combust�on-dr�ven �nstab�l�t�es. Here, s�mpl�f�ed two-param-
eter l�near formulat�ons are �ntroduced to account for these sens�t�v�t�es �n both the collapsed and d�str�buted 
combust�on models. Furthermore, a two-parameter l�near�zed spray atom�zat�on model has also been 
�ncorporated to reflect s�m�lar sens�t�v�t�es assoc�ated w�th th�s process. The computat�onal doma�n and 
the var�ous submodel reg�ons are �llustrated �n f�gure 2.

2.3.1  Collapsed Combustion Zone

Impos�ng a collapsed combust�on zone at the �njector face prov�des a mechan�sm for burned gas-
eous propellant to enter the computat�onal doma�n at the �nflow boundary. Thus, from a phys�cal perspec-
t�ve, the �nflow boundary may be v�ewed as a transp�r�ng react�ve boundary layer. Here, the character�st�cs 
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of th�s transp�r�ng react�ve boundary may be def�ned by the mean burned gas Mach number, Mb, and the 
mean burned gas temperature, Tb. For conven�ence, we express the �njector face combust�on source as the 
sum of a steady mean flow quant�ty and an unsteady perturbat�on:

   m m ms s s= + ′ ,  (29)

where the mean mass transp�rat�on rate corresponds to the steady solut�on for the part�cular rocket eng�ne 
under cons�derat�on.

Sens�t�v�ty of the transp�r�ng combust�on rate to pressure fluctuat�ons and the t�me rate of change 
�n these pressure fluctuat�ons �s accounted for through a s�mple phenomenolog�cal two-parameter l�near-
�zed model �n the form8

 ′ = ′ +






∂ ′
∂



m
m

p
p

l
pc

p
t

s

s
s s

cα β ,  (30)

where the overbars symbol�ze mean quant�t�es and pr�mes represent perturbat�ons. The second term on the 
r�ght-hand s�de �ntroduces a character�st�c t�me scale def�ned as the rat�o of the combustor length, lc, to the 
mean acoust�c veloc�ty, c .

2.3.2  Atomization Zone

The rema�nder of the propellant not consumed �n the collapsed combust�on zone �s assumed  
to enter the computat�onal doma�n �n the form of l�qu�d jets that completely atom�ze over a predef�ned 
length, la. The result�ng spray �s character�zed by a Sauter mean d�ameter (SMD), wh�ch �s then used to 
compute the effect�ve �nterphase transport terms. Because the atom�zat�on process �s sens�t�ve to both 
pressure and veloc�ty fluctuat�ons, the SMD can actually d�splay a t�me-dependent var�at�on that �s d�rectly 
coupled to chamber osc�llat�ons. To capture the underly�ng fundamental coupl�ng process, a l�near�zed 
two-parameter atom�zat�on model �s adapted us�ng the form

 
′

= ′ + ′d
d

p
p

u
u

p

p
a aα β ,  (31)

where aa �s the pressure sens�t�ve �ndex and βa �s the veloc�ty sens�t�ve �ndex for atom�zat�on. Numer�cal 
values for these parameters have been der�ved for var�ous atom�zat�on models and are tabulated by  
Grenda et al.9

2.3.3  Distributed Combustion Zone

The atom�zed propellant spray �s represented as a collect�on of d�screte computat�onal parcels 
wh�ch are �njected �nto the combustor at spec�f�ed t�me �ntervals. Each parcel �s �dent�f�ed w�th a group of 
phys�cal droplets, the number of wh�ch �s determ�ned from the propellant �nject�on rate and the mean drop-
let s�ze. The spat�al d�str�but�on of the phys�cal part�cles w�th�n each computat�onal parcel �s def�ned by a 
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probab�l�ty dens�ty funct�on (PDF) �n space. The behav�or of the phys�cal droplets �s determ�ned by the 
h�story of the�r representat�ve parcel, whose pos�t�on corresponds to the mean of the PDF. The parcels are 
tracked through the combustor us�ng a Lagrang�an procedure, and knowledge of the shape and stat�st�cal 
parameters of the PDF perm�ts calculat�on of �nterphase transport terms.

PDF representat�on �s ut�l�zed �n order to m�n�m�ze the numer�cal shot no�se that can result when 
each parcel �s descr�bed by a delta funct�on po�nt source and the rat�o of parcels to phys�cal droplets �n the 
spray �s too small. The numer�cal no�se ar�s�ng from a po�nt source d�str�but�on funct�on can be m�n�m�zed 
by us�ng a large number of parcels; however, such an approach can be extremely costly �n terms of com-
putat�onal eff�c�ency.

Here, we employ a rectangular un�form PDF shape that �s fully def�ned g�ven the mean pos�t�on 
and half-w�dth. The streamw�se w�dth of the PDF corresponds to the product of the �nject�on veloc�ty and 
a spec�f�ed �nject�on t�me �nterval, wh�ch �s generally set to obta�n a PDF w�dth on the order of the com-
putat�onal cell w�dth. In add�t�on, the PDF shape and w�dth rema�n f�xed throughout a parcel’s l�fet�me.

The mean pos�t�on of each PDF �s determ�ned from the Lagrang�an track�ng of a s�ngle computa-
t�onal parcel character�z�ng the behav�or of the phys�cal droplets �n the group. Thus, parcel mot�on �s 
governed by the the equat�ons of mot�on,

 
du
dt

C
d

u u u up g

p

D

p
p p= − −( )3

4
ρ
ρ

 (32)

and

 
dx
dt

up
p= .  (33)

For the sake of s�mpl�c�ty, these equat�ons are l�near�zed by hold�ng ρ ρg p D p pC d u u( )( ) −  constant 
over the computat�onal t�me step and �ntegrat�ng analyt�cally. Th�s g�ves the updated parcel veloc�ty as

 u u
t

u
t

p p≈
−





+ −
−













, exp exp0 1∆ ∆
τ τ

 (34)

and the parcel pos�t�on �s obta�ned us�ng expl�c�t Euler �ntegrat�on

 x x u tp p p≈ +, , .0 0∆  (35)

The unsteady combust�on rate for each parcel �s assumed to be governed by the vapor�zat�on rate, 
wh�ch can be l�near�zed about some mean steady state to obta�n a vapor�zat�on-controlled combust�on 
response funct�on. For conven�ence, we express the local propellant combust�on rate as the sum of a 
steady mean flow quant�ty and an unsteady perturbat�on:

   m m mp p p= + ′ ,  (36)
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where the �nstantaneous vapor�zat�on/combust�on rate has the general form

  m m K Kp p p u= +( )  (37)

and Kp and Ku represent the pressure and veloc�ty sens�t�v�t�es, respect�vely. The mean mass burn�ng rate 
of a parcel �s governed by the mean burn�ng rate constant, β , such that

 m dp p p=
π ρ β
4

.  (38)

Note that the evaluat�on of the �nstantaneous propellant vapor�zat�on/combust�on rate requ�res 
knowledge of the droplet temperature var�at�on w�th t�me. The s�mplest feas�ble model for �nternal energy 
transport that can account for local gas-dynam�c fluctuat�ons �s based on the rap�d-m�x�ng l�m�t assump-
t�on. Here, the droplet temperature �s assumed to be un�form due to strong �nternal c�rculat�on, but �ts t�me 
rate of change �s allowed to vary accord�ng to the balance between the energy leav�ng the surface due to 
vapor�zat�on and the energy arr�v�ng due to heat transfer. L�near�zat�on of th�s model leads to a parcel 
combust�on response funct�on of the form:9

 
′

= ′ + ′



m
m

p
p

u
u

p

p
v vα β* * ,  (39)

where the pressure- and veloc�ty-sens�t�ve �nd�ces, α βv v
* * and , are complex coeff�c�ents due to the phase 

d�fference that can ex�st between the vapor�zat�on and gas osc�llat�ons as a result of temporal osc�llat�ons 
�ns�de the droplet. Th�s phase d�fference can also be accounted for through the �ntroduct�on of appropr�ate 
t�me lags when evaluat�ng the fluctuat�ng gas-dynam�c propert�es such that the response �nd�ces are real 
numbers

 
′

=
′ −( )

+
′ −( )



m
m

p t
p

u t

u
p

p
v vα

τ
β

τα β .  (40)

These combust�on response t�me lags can have �mportant effects on combustor stab�l�ty and, �n general, 
may not be neglected.

2.4  Short-Nozzle Approximation

In general, the computat�on should proceed through the converg�ng-d�verg�ng sect�on to the nozzle 
ex�t. Here, the flow �s superson�c, and all of the character�st�cs are outrunn�ng so that no phys�cal cond�-
t�ons need be spec�f�ed. However, �t �s often suff�c�ent to employ a subson�c outflow boundary cond�t�on 
at the nozzle entrance by mak�ng the well-known short-nozzle approx�mat�on.10,11 That �s, the flow �s 
assumed to accelerate to son�c veloc�ty �n zero length, wh�ch �s equ�valent to f�x�ng the Mach number at 
the subson�c outflow boundary, ′ =M 0, for the s�ngle �n-runn�ng character�st�c. Th�s approx�mat�on �s 
str�ctly val�d for pure long�tud�nal-mode osc�llat�ons only and, at worst, underest�mates the nozzle damp-
�ng effect. To obta�n a mean flow solut�on pr�or to mak�ng a combustor stab�l�ty calculat�on, �t �s necessary 
to spec�fy the stat�c pressure at the nozzle entrance such that �t matches the mean chamber pressure for the 
rocket eng�ne.
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The short-nozzle approx�mat�on can also be expressed �n terms of an adm�ttance relat�onsh�p �n the 
form

 ρ
ρ

′ = ′u
u

a p
pe

sn
e

,  (41)

where asn �s the short-nozzle adm�ttance coeff�c�ent. It �s of �nterest to der�ve an express�on for th�s adm�t-
tance coeff�c�ent us�ng small d�sturbance l�near�zat�on theory.

F�rst, note that equat�on (41) �s equ�valent to the d�fferent�al form

 a
dp
p

du ud
u

du
u

d
sn =

+
= +

ρ ρ
ρ

ρ
ρ

.  (42)

Then, cons�der the Mach number def�n�t�on, M u c= / , the �sentrop�c relat�onsh�p for an �deal gas,  
p k/ ργ = , and the acoust�c veloc�ty relat�onsh�p for an �deal gas, c p= γ ρ/ . Tak�ng the logar�thm of 
these express�ons and putt�ng them �n d�fferent�al form y�elds

 dc
c

du
u

dp
p

d dc
c

dp
p

d
= = = −









; ;γ ρ

ρ
ρ

ρ
1
2

,  (43)

where the short-nozzle cond�t�on, dM = 0, has been enforced. Us�ng these relat�onsh�ps to el�m�- 
nate du u d/ /and ρ ρ  �n equat�on (42), we deduce the follow�ng value for the short-nozzle adm�ttance 
coeff�c�ent:

 asn =
+γ
γ

1
2

.  (44)
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3.  VALIDATION

As a basel�ne val�dat�on, �t �s conven�ent to exam�ne the s�mpl�f�ed case of unsteady, nonreact�ng, 
�sentrop�c duct flow and to compare the numer�cal scheme pred�ct�ons w�th small d�sturbance l�near acous-
t�cs theory. In th�s way, the f�del�ty of the numer�cal scheme can be evaluated w�th respect to the bas�c 
underly�ng flu�d dynam�c phenomena �n unsteady flow. Quant�tat�ve assessment of acoust�c wave dr�v-
�ng/damp�ng mechan�sms assoc�ated w�th chem�cal react�on processes �s cr�t�cally sens�t�ve to the deta�led 
phys�cal submodel�ng and �s ult�mately dependent on emp�r�cal val�dat�on. Ident�f�cat�on and ver�f�cat�on 
of these dr�v�ng and damp�ng mechan�sms are, of course, the central object�ves of combust�on �nstab�l�ty 
research.

3.1  Linearized Small Perturbation Acoustics

For constant area duct flow, the cont�nu�ty and momentum perturbat�on equat�ons for an �nv�sc�d 
flu�d may be comb�ned to obta�n an acoust�c wave equat�on �n the form12

 1 1 2 02
2

2

2

2

2
−( ) ∂ ′

∂
−

∂ ′
∂

−
∂ ′
∂ ∂

=M
p

x c
p

t
M
c

p
x t

,  (45)

where the usual l�near�zat�on def�n�t�ons apply. Note that the cross der�vat�ve term �n equat�on (45) ar�ses 
as a consequence of the nonzero mean flow veloc�ty, u ≠ 0, �n the duct. Cons�der�ng a complex harmon�c 
solut�on of the form ′ ∝p e ei x i tµ Ω  �n equat�on (45), we obta�n the d�spers�on relat�onsh�p

 1 2 02 2
2

2−( ) − − =M
M
c c

µ µΩ Ω ,  (46)

wh�ch �s quadrat�c �n terms of the wave number µ . Thus, the character�st�c wave numbers are

 µ µ1 21 1
=

−( ) =
−

+( )
Ω Ω
M c M c

; ,  (47)

and the complex harmon�c solut�on takes the general form

 ′ = +( )p
p

K e K e ei x i x i t
1 21 2µ µ Ω ,  (48)

where K1 and K2 are undeterm�ned constants.

Add�t�onal constra�nts follow from a cons�derat�on of the character�st�c form of the Euler  
equat�ons:13
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and 
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,  (51)

wh�ch express the propagat�on of entropy along the streaml�ne C0 as def�ned by dx dt u=  and the  
propagat�on of pressure waves, as descr�bed by the R�emann var�ables w u c2 2 1= + −( )γ  and 
w u c3 2 1= − −( )γ , along the character�st�cs C+ and C−, as def�ned by dx dt u c= +  and dx dt u c= − , 
respect�vely. For �nstance, l�near�zat�on of the entropy conservat�on relat�onsh�p about the mean value 
�mpl�es ′ ≡s 0  (�n the absence of flow d�scont�nu�t�es), and l�near�zat�on of the R�emann character�st�c 
equat�ons y�elds
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∂
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and
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from wh�ch complex harmon�c solut�ons may be deduced:

 ′ = − −( )u
u

K
M

e K e ei x i x i t1
21 2

γ
µ µ Ω  (54)

and

 ′ =
−( ) +( )c

c
K

e K e ei x i x i t1
2

1
2

1 2
γ
γ

µ µ Ω .  (55)

In order to fac�l�tate further development of the general�zed solut�ons, �t �s useful to �ntroduce the 
acoust�c �mpedance funct�on z  as a parameter us�ng the standard def�n�t�on

 ′ = ′p
p

z
u
u

.  (56)
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Appl�cat�on of th�s �mpedance cond�t�on at the duct �nlet �mpl�es ′( ) ′( ) ==p p u u zx in0
, and subst�tut�on 

of the complex harmon�c solut�ons y�elds the result
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M z

M z
in

in
2 =

− −
−

γ
γ

.  (57)

The �mpedance cond�t�on may also be appl�ed at the duct ex�t to obta�n ′( ) ′( ) ==p p u u zx l ex
d

, where 
subst�tut�on of the complex harmon�c solut�ons g�ves the add�t�onal relat�on,
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−
 .  (58)

Thus, equat�ons (57) and (58) may be comb�ned to obta�n a relat�on between the character�st�c wave num-
bers and the �nlet/outlet acoust�cal �mpedances
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Tak�ng the natural logar�thm of th�s equat�on y�elds the more conven�ent form
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and by not�ng that µ µ2 1
22 1− = − −Ωc M , �t �s poss�ble to develop a general�zed relat�onsh�p for Ω :
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Now, recall that the complex harmon�c solut�on for acoust�cal d�sturbances at any f�xed locat�on �n 
the duct �s proport�onal to e e ei t t i tΩ = λ ω , where an ampl�f�cat�on coeff�c�ent, λ, and osc�llat�on frequency, 
ω , have been def�ned such that
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Thus, the ampl�f�cat�on coeff�c�ent for acoust�cal d�sturbances �n the duct �s def�ned by the general�zed 
express�on
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and the per�od of osc�llat�on, Ρ , for a g�ven acoust�cal mode, n, �s g�ven by

 P
f

l

nc M
d= = =

−( )
1 2 2

1 2
π

ω
.  (64)

Note that the value of the ampl�f�cat�on coeff�c�ent govern�ng acoust�cal growth/decay rates �s 
dependent on the �mpedance funct�ons for the duct �nlet and ex�t. These parameters are determ�ned from 
the appl�cat�on of appropr�ate boundary cond�t�ons, as descr�bed below.

For subson�c �nflow, there �s only one outgo�ng character�st�c and two phys�cal boundary cond�-
t�ons must be spec�f�ed. Thus, we �mpose constant mass flux and constant entropy cond�t�ons at the duct 
�nlet:

 d u d u d ux x
ρ ρ ρ( ) = ⇒ ( )  = ( ) + ( ) = =

 0  0 0
ln ln ln  =

=
 

x 0
0  (65)

and
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x x
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= =
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0 0
ln ln ln  =

=
 

x 0
0 , (66)

from wh�ch we deduce the follow�ng d�fferent�al relat�onsh�ps and the�r equ�valent l�near�zed acoust�c 
forms:
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d u
u

= − ⇒ ′ = − ′ρ
ρ

ρ
ρ

 (67)

and

 dp
p

d p
p

= ⇒ ′ = ′γ ρ
ρ

γ ρ
ρ

.  (68)

Note that equat�on (68) appl�es not only at the �nlet but throughout the duct s�nce entropy must rema�n 
�nvar�ant along the ent�re flow path as prev�ously deduced as a consequence of equat�ons (49)–(51). Com-
b�n�ng equat�ons (67) and (68) y�elds an express�on def�n�ng the �mpedance funct�on at the duct �nlet,

 ′ = − ′ ⇒ = −
= =

p
p

u
u

z
x x

in
0 0

γ γ .  (69)

For subson�c outflow, there are two outgo�ng character�st�cs and �t �s only necessary to spec�fy one 
phys�cal boundary cond�t�on. In th�s case, we �ntroduce an acoust�cal adm�ttance cond�t�on for mass flux 
at the duct ex�t:

 ρ
ρ

′ = ′

= =

u
u

a
p
px l x ld d

,  (70)
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from wh�ch we deduce the follow�ng d�fferent�al relat�onsh�p and �ts equ�valent l�near�zed acoust�c form:

 du
u

d
a

dp
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u
u

a
p
p

+ = ⇒ ′ + ′ = ′ρ
ρ

ρ
ρ

.  (71)

El�m�nat�ng ′ρ ρ  us�ng equat�on (68), wh�ch appl�es throughout the duct, y�elds an express�on def�n�ng 
the �mpedance funct�on at the duct ex�t:
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ex
d d

γ
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γ
γ1 1

.  (72)

The work�ng relat�on for the acoust�c ampl�f�cat�on coeff�c�ent follows from el�m�nat�on of the 
�nflow and outflow �mpedances �n equat�on (63) us�ng the results of equat�ons (69) and (72).

3.2  Evaluation of Numerical Methodology

The numer�cal methodology �s evaluated and val�dated by compar�ng CFD pred�ct�ons w�th small 
d�sturbance l�near acoust�cs theory for unsteady, �sentrop�c duct flow. Here, a small ampl�tude f�rst-mode 
pressure perturbat�on �s �mposed on the computed mean duct flow, and the computat�on �s restarted to 
observe the temporal evolut�on of th�s acoust�cal d�sturbance for a g�ven outflow adm�ttance coeff�c�ent. 
By arb�trar�ly spec�fy�ng the ex�t-plane adm�ttance coeff�c�ent, �t �s poss�ble to obta�n grow�ng or decay�ng 
acoust�c waves as des�red. The result�ng stab�l�ty attr�butes, as def�ned by the ampl�f�cat�on coeff�c�ent and 
per�od of osc�llat�on, may then be d�rectly compared w�th l�near acoust�cs theory. For s�mpl�c�ty, the 
phys�cal propert�es of a�r were ut�l�zed for all calculat�ons. The phys�cal cond�t�ons for the basel�ne duct 
acoust�cs problem were ld = 0 5.  m, M = 0 2. , p = 1 atm, and T = 300 K.

A ser�es of computat�ons were f�rst carr�ed out to exam�ne the �nfluence of gr�d dens�ty on numer-
�cal performance. These calculat�ons were based on a f�xed ex�t plane adm�ttance value, a = –0.1, for 
wh�ch small-d�sturbance l�near acoust�cs theory pred�cts λ =19.56 s–1 and P = 3.00 ms (�.e., f = 333 Hz) 
for the fundamental mode. The relat�vely large value for λ �mpl�es rap�dly �ncreas�ng acoust�c wave 
strength culm�nat�ng �n the development of large ampl�tude acoust�c shocks. The numer�cal calculat�ons 
were performed w�th 50, 100, 150, and 200 gr�d po�nts us�ng EI and CN t�me �ntegrat�on w�th the convec-
t�ve fluxes evaluated us�ng 2CD, 2UP, and 3UP schemes. The temporal evolut�on of pressure at the  
outflow boundary was then used to compute the ampl�f�cat�on coeff�c�ent and osc�llat�on per�od dur�ng  
the early growth per�od when the acoust�c ampl�tudes were small. The results are summar�zed �n  
tables 1 and 2.

Inspect�on of these tabulat�ons reveals that the gr�d dens�ty has a strong effect on the pred�cted 
ampl�f�cat�on coeff�c�ent but an extremely weak effect on the osc�llat�on per�od. It �s also ev�dent that the 
f�rst-order EI techn�que y�elds poor stab�l�ty pred�ct�ons, �rrespect�ve of flux d�fferenc�ng scheme, and 
even results �n wave decay for grossly coarse gr�ds. The second-order CN scheme, on the other hand, per-
forms much better. Although �t sl�ghtly under pred�cts wave growth rate, the method �s probably adequate 
for determ�n�ng approx�mate stab�l�ty l�m�ts. The best all-around results were obta�ned when us�ng CN 
t�me �ntegrat�on w�th an upw�nd flux d�fferenc�ng scheme.
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Table 1.  Computed ampl�f�cat�on coeff�c�ent, λ (1/s). (L�near theory: a = –0.1, 
 λl�near =19.56 s–1, and Pl�near = 3 ms.)

Ngrid EI/2CD EI/2UP EI/3UP CN/2CD CN/2UP CN/3UP

50
100
150
200

–38
–7.1

1.8
6.3

–40
–9.2

1.3
6.1

–40
–9.1

1.3
6

12.5
14.3
14.8
15.6

10
15.1
15.9
16.4

10
15.1
15.9
16.4

Table 2.  Computed osc�llat�on per�od, P (ms). (L�near theory: a = –0.1, 
 λl�near =19.56 s–1, and Pl�near = 3 ms.)

Ngrid EI/2CD EI/2UP EI/3UP CN/2CD CN/2UP CN/3UP

50
100
150
200

2.98
2.99
2.99
2.99

2.98
2.99
2.99
2.99

2.98
2.99
2.99
2.99

2.92
2.98
2.99
2.99

2.98
2.99
2.99
2.99

2.98
2.99
2.99
2.99

Compar�son of small d�sturbance l�near acoust�c theory w�th the CN/upw�nd d�fferenc�ng CFD 
method �nd�cates the need for a m�n�mum gr�d dens�ty to obta�n rel�able pred�ct�ons. In general, th�s can 
be expressed as a m�n�mum number of gr�d po�nts per wavelength for the fundamental long�tud�nal 
mode:

 N
N

ld
λ = ≥grid   nodes/wavelength .

2
100  (73)

As an example, f�gure 3 shows the pred�cted pressure fluctuat�ons at the duct ex�t for a 200-gr�d-po�nt 
CFD calculat�on super�mposed w�th the ampl�tude envelope from small d�sturbance l�near acoust�c theory. 
To better �llustrate the compar�son, f�gure 4 presents the same data over a smaller t�me �nterval w�th the 
correspond�ng power spectrum �nset. Here, the CFD results closely follow the class�cal exponent�al growth 
rate pred�cted by l�near theory unt�l the osc�llat�ons become large enough to �nduce s�gn�f�cant nonl�near 
effects. Beyond th�s po�nt, the wave front gradually steepens �nto an acoust�c shock as the ampl�tude 
growth rate decl�nes and a l�m�t cycle osc�llat�on �s establ�shed. Th�s example also serves to �llustrate the 
nonosc�llatory, h�gh-resolut�on features of the numer�cal scheme.

As further val�dat�on, �t �s of �nterest to exam�ne the CFD pred�cted ampl�f�cat�on coeff�c�ent as a 
funct�on of the outflow adm�ttance coeff�c�ent �n compar�son to l�near acoust�c theory. These results are 
shown �n f�gure 5 over a relevant range of adm�ttance values. In general, the CFD methodology sl�ghtly 
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under pred�cts the wave ampl�f�cat�on rate over the full range of adm�ttance values. Th�s behav�or �s more 
pronounced when the adm�ttance magn�tudes become large and nonl�near mechan�sms have an apprec�a-
ble effect. Because the CFD pred�cted �nstab�l�ty growth rates err on the conservat�ve s�de, �t �s bel�eved 
that the method �s suff�c�ently accurate for study�ng alternat�ve combust�on models and the�r result�ng 
�mpact on system stab�l�ty.
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4.  APPLICATION

Some sample combustor stab�l�ty calculat�ons are now exam�ned for �llustrat�ve purposes. The 
representat�ve results are �ntended to prov�de concrete ut�l�zat�on examples and demonstrate how combus-
t�on models may be used to study �nstab�l�ty character�st�cs. The f�rst step �n evaluat�ng combustor stab�l-
�ty character�st�cs �s to compute a mean flow solut�on us�ng the two-zone combust�on model w�th all 
sens�t�v�ty �nd�ces set to zero. Th�s also requ�res spec�f�cat�on of the mean chamber pressure at the nozzle 
entrance. Once a fully converged steady-state solut�on has been obta�ned, the calculat�on may be restarted 
us�ng nonzero combust�on response �nd�ces. In th�s case, the short-nozzle adm�ttance approx�mat�on �s 
�nvoked for the outflow boundary cond�t�on. From a pract�cal perspect�ve, rocket combustor �nstab�l�t�es 
ar�se from broadband d�sturbances �n the chamber, and each mode w�ll grow or decay accord�ng to �ts own 
response attr�butes. Here, the �n�t�al d�sturbance �s s�mply prov�ded by a pressure perturbat�on of the f�rst 
long�tud�nal-mode osc�llat�on.

4.1  generic Rocket Chamber

For the example calculat�ons, representat�ve phys�cal cond�t�ons and propellant propert�es were 
spec�f�ed for a gener�c l�qu�d-propellant rocket eng�ne. The geometr�c d�mens�ons for th�s gener�c rocket 
chamber were lc = 0 5.  m and A Ain ex= = 0 05.  m2, and the chamber cond�t�ons were pex = 34 atm, 
Tflame  K= 2 800, , and mtot = 50 kg/s. The thermodynam�c propert�es of the burned propellant were taken 
to be γ = 1.2 and Cp = ⋅1 800,  m /s K2 2 . All calculat�ons were performed on a 100-gr�d-po�nt mesh us�ng 
the CN/2UP algor�thm.

Two d�st�nct cases were exam�ned us�ng the two-zone combust�on model. Case I assumed that the 
ent�re combust�on process was collapsed on the �njector face such that all propellant entered the chamber 
�n gaseous form at a mean temperature correspond�ng to the spec�f�ed flame temperature, 
T Ts = =flame  K2 800, . The mean transp�rat�on Mach number at the �nflow boundary was therefore 
adjusted to obta�n the proper total mass flow rate of the rocket (�.e., Ms = 0.243). Case II assumed one-
f�fth of the propellant was reacted �n a collapsed combust�on zone at the �njector face wh�le the rema�nder 
was �njected as a well-d�spersed spray w�th zero atom�zat�on length. In th�s case, the mean transp�rat�on 
temperature and Mach number were taken to be Ts = 1 000,  K and Ms = 0.03, respect�vely. The spray 
droplets had an SMD of 100 µm, a dens�ty of 750 kg/m3, and entered the chamber w�th a veloc�ty of  
75 m/s. Upon �nject�on, the phys�cal droplets were grouped �nto numer�cal parcels represented by a un�-
form spat�al d�str�but�on w�th a half-w�dth equal to the computat�onal gr�d spac�ng. The temporal behav�or 
of the ent�re collect�on of phys�cal droplets was then determ�ned from the h�story of a s�ngle droplet as �t 
was transported and reacted accord�ng to the d�str�buted combust�on model, assum�ng a mean droplet burn 
rate of 1 mm2/s.
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4.2  Stability Limits

4.2.1  Case I—Fully Collapsed Combustion

Because the ent�re combust�on process �s fully collapsed onto the �njector face for case I cond�-
t�ons, the burned gas s�mply enters the chamber at the spec�f�ed flame temperature w�th a veloc�ty that 
sat�sf�es mass conservat�on. The absence of d�str�buted combust�on leads to a tr�v�al mean flow solut�on 
through the chamber. The stab�l�ty character�st�cs of the combustor were then exam�ned by �nvok�ng the 
short-nozzle adm�ttance approx�mat�on and restart�ng the calculat�on from the mean flow solut�on w�th a 
1-percent �n�t�al pressure d�sturbance to the f�rst long�tud�nal-mode osc�llat�on. The mass transp�rat�on rate 
of the collapsed combust�on zone was made sens�t�ve to pressure fluctuat�ons by �mpos�ng nontr�v�al com-
bust�on response attr�butes us�ng the two-parameter phenomenolog�cal model def�ned �n equat�on (30).

For demonstrat�on purposes, we arb�trar�ly set βs = 0 and varr�ed αs to determ�ne system stab�l�ty 
l�m�ts. When αs = 0 9. , for �nstance, the combustor exh�b�ted a stable response to the �mposed d�sturbance, 
as �llustrated �n the decay�ng pressure waveform of f�gure 6. However, �f the combust�on response �ndex 
was sl�ghtly �ncreased, such that αs = 1, the combustor became unstable and the pressure wave ampl�tude 
was found to grow, as shown �n f�gure 7. As the combust�on response �ndex became even larger, the ampl�-
f�cat�on rate cont�nued to �ncrease as �llustrated for αs = 1 1.  and αs = 1 2.  �n F�gures 8 and 9, respect�vely. 
The result�ng Case I combustor stab�l�ty character�st�cs are summar�ze �n f�gure 10, wh�ch shows the pre-
d�cted ampl�f�cat�on coeff�c�ent as a funct�on of the pressure-sens�t�ve combust�on response �ndex, αs. 
The stab�l�ty l�m�t for th�s part�cular case �s αs ≈ 0 95. .

4.2.2  Case II—Partially Collapsed Combustion

For case II cond�t�ons, the combust�on process �s part�ally collapsed onto the �njector face w�th  
20 percent of the total mass flow enter�ng the chamber through a transp�r�ng react�ve boundary. The 
rema�n�ng 80 percent of the propellant �s �njected as a spray and consumed accord�ng to the d�str�buted 
combust�on model. The converged mean mass flow and Mach number d�str�but�ons for case II cond�t�ons 
are shown �n f�gure 11. Aga�n, stab�l�ty character�st�cs of the combustor were exam�ned by �nvok�ng the 
short-nozzle adm�ttance approx�mat�on and restart�ng the calculat�on from the mean flow solut�on w�th a 
1-percent �n�t�al pressure d�sturbance to the f�rst long�tud�nal-mode osc�llat�on. The d�fference from case 
I be�ng that the mass transp�rat�on rate of the collapsed combust�on zone was made �nsens�t�ve to pressure 
fluctuat�ons (�.e., α βs s= = 0) whereas the d�str�buted combust�on process was made sens�t�ve to pressure 
and veloc�ty fluctuat�ons by �mpos�ng nontr�v�al combust�on response attr�butes us�ng the two-parameter 
phenomenolog�cal model def�ned �n equat�on (40).

For demonstrat�on purposes,we arb�trar�ly set βv = 0  and varr�ed αv to determ�ne system stab�l�ty 
l�m�ts, assum�ng zero phase lags (τ τα β= = 0). F�gure 12 shows the unstable response of the combustor 
to the �n�t�al d�sturbance when αv = 1. Here, combust�on pressure coupl�ng was strong enough to over-
come damp�ng effects and acoust�c nozzle losses to dr�ve �nstab�l�ty. The pressure wave ampl�tude was 
observed to grow exponent�ally unt�l nonl�near effects lead to the format�on of a l�m�t cycle osc�llat�on 
w�th a peak fluctuat�on >10 percent of the mean pressure. The result�ng l�m�t cycle osc�llat�on �s per�od�c 
but not perfectly s�nuso�dal w�th nonl�near�t�es clearly ev�dent �n the waveform. Th�s observat�on �s re�n-
forced by the spat�al pressure prof�les w�th�n the unstable combustor, as shown �n f�gure 13 at var�ous t�me 
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�ntervals, where the pressure wave �s �mp�ng�ng the �njector face and be�ng reflected back toward the 
nozzle. The result�ng case II combustor stab�l�ty character�st�cs are summar�ze �n f�gure 14, wh�ch shows 
both the pred�cted ampl�f�cat�on coeff�c�ent and the l�m�t cycle peak-to-peak pressure fluctuat�on as a 
funct�on of the pressure-sens�t�ve combust�on response �ndex, αv . The stab�l�ty l�m�t for th�s part�cular 
case �s αv ≈ 0 7. .
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5.  CONCLuSIONS

A computat�onal method was developed for the analys�s of long�tud�nal-mode l�qu�d-propellant 
rocket combust�on �nstab�l�ty based on the unsteady, quas�-one-d�mens�onal Euler equat�ons w�th appro-
pr�ate source terms. These equat�ons were �ntegrated �n t�me us�ng second-order, h�gh-resolut�on, charac-
ter�st�c-based, flux d�fferenc�ng spat�al d�scret�zat�on w�th Roe averag�ng of the Jacob�an matr�x. A 
two-zone combust�on model was �ntroduced where the propellant �s e�ther reacted �n a collapsed combus-
t�on at the �njector face or �n a d�str�buted combust�on process w�th �nterphase transport der�ved from a 
Lagrang�an treatment of representat�ve spray droplets. The local combust�on rate was made sens�t�ve to 
pressure and veloc�ty fluctuat�ons through the s�mple �ntroduct�on of proport�onal combust�on response 
�nd�ces. It was also necessary to properly �mplement reflectance/adm�ttance boundary cond�t�ons for 
�mp�ng�ng acoust�c waves �n such a way that damp�ng mechan�sms would be accurately represented.

For basel�ne val�dat�on, �t was conven�ent to compare CFD pred�cted wave ampl�f�cat�on rate and 
osc�llat�on frequency w�th small d�sturbance l�near acoust�cs theory for unsteady, nonreact�ng, �sentrop�c 
duct flow. The major f�nd�ngs of that val�dat�on effort were as follows: (1) The best all around CFD per-
formance was obta�ned when us�ng CN t�me �ntegrat�on w�th an upw�nd flux d�fferenc�ng scheme and  
(2) rel�able CFD pred�ct�ons could only be obta�ned when the computat�onal mesh exceeded a m�n�mum 
gr�d dens�ty per wavelength, Nλ = 100. Although the second-order CN scheme under pred�cts wave growth 
rate to a sl�ght degree, the method �s generally adequate for determ�n�ng system stab�l�ty l�m�ts based on 
ava�lable combust�on process models.

Although the current development has been conf�ned to an over-s�mpl�f�ed l�near combust�on 
response model, more comprehens�ve phys�cal submodel�ng can be read�ly �mplemented as des�red by the 
analyst. In fact, �t appears that the most �mportant use of CFD tools for rocket combust�on �nstab�l�ty �s to 
serve as a research test-bed for �nvest�gat�ng the effect of alternat�ve phys�cal submodels on underly�ng 
processes. For �llustrat�ve purposes, some sample stab�l�ty calculat�ons were carr�ed out for a gener�c com-
bustor conf�gurat�on. The object�ves of th�s bas�c exerc�se were to demonstrate computer code ut�l�zat�on 
procedures for �nstab�l�ty calculat�ons and �nvest�gate the effect of our s�mpl�f�ed collapsed and d�str�buted 
combust�on process models on �nstab�l�ty character�st�cs. Us�ng th�s approach, �t was shown how the com-
putat�onal methodology could be used to d�rectly determ�ne l�near stab�l�ty l�m�ts as well as reveal �mpor-
tant nonl�near effects—part�cularly as they relate to the development of steep fronted acoust�c waves and 
long-term l�m�t cycle osc�llat�ons.

In conjunct�on w�th exper�mental data, much could be learned about the chem�co-phys�cal nature 
of combust�on dr�ven �nstab�l�t�es through CFD analyses. W�th t�me, as model�ng becomes more ref�ned 
through �nterplay between exper�ment, theory, and computat�on, �t should be poss�ble to evolve a pred�c-
t�ve capab�l�ty that would d�rectly a�d and support eng�ne des�gn and development act�v�t�es. It �s hoped 
that the computat�onal framework developed here�n w�ll serve as a mean�ngful contr�but�on towards that 
goal. Beyond submodel ref�nements and essent�al val�dat�on efforts, the next log�cal evolut�onary step 
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would be to extend the framework to mult�ple d�mens�ons for �nclus�on of tangent�al-mode �nstab�l�t�es, 
wh�ch are known to play a central role �n the most dangerous and destruct�ve forms of l�qu�d-propellant 
rocket resonant combust�on.
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